English Profile
Ruichu Cai 蔡瑞初
教授
数据挖掘与信息检索实验室
计算机学院
广东工业大学
中国, 广州. 510000.
邮箱: cairuichu@gmail.com
电话号码: +86-158-0003-0523
|
|
个人简介
蔡瑞初,教授、博士生导师、数据挖掘与信息检索实验室主任、国家优秀青年基金获得者。
2010年于华南理工大学获得工学博士学位,并进入广东工业大学工作;2015年并被评为教授、博士生导师;曾先后到新加坡国立大学、UIUC高等数字科学研究中心访问学习。
蔡教授专注于因果关系发现与因果性学习、深度学习等领域的理论与应用研究。在上述领域先后主持国家优秀青年基金、科技部”科技创新2030“重大项目、省杰出青年基金、省特支计划等项目;在因果关系发现、因果性学习方面开展了系列有益探索,在ICML、NIPS、AAAI、IJCAI等领域重要会议和TNNLS、TKDE等国际著名期刊发表论文100余篇;协助华为、网易、腾讯、滴滴、唯品会、南方电网、南方通讯建设等企业解决了因果故障定位、因果决策优化、因果个性推荐等应用难题,取得了良好的经济和社会价值;获得省科学技术一等奖(第三完成人)、国家发明专利奖优秀奖(第三完成人)等奖项;指导学生获得NeurIPS 2019解耦学习算法大赛第一名、亚太因果推理大会推理大赛第一名、“互联网+”全国决赛金奖等奖项;担任Neural Networks杂志Action Editor、NeurIPS、ICML等会议的Area Chair,IJCAI、AAAI等会议的SPC等。
教育经历
-
华南理工大学
中国, 广州
-
应用数学学士和计算机科学博士学位
2001 年 9 月 - 2010 年 7 月
-
新加坡国立大学
新加坡
-
计算机应用技术(联合培养)工学博士学位
2007 年 9 月 - 2009年 9 月
工作经历
广东工业大学
-
讲师,副教授,正教授
2010 年 7 月 - 现在
-
Advanced Digital Sciences Center, a center of University of Illinois at Singapore
-
客座高级研究员
2013 年 7 月 - 2014 年 7 月
-
网易
-
数据科学家(兼职顾问)
2009 年 11 月 - 2013 年 6 月
研究兴趣
-
因果关系发现与因果性学习
-
深度学习,自然语言处理等等
News
-
2025/3/7, 1篇文章 “Interpretable High-order Knowledge Graph Neural Network for Predicting Synthetic Lethality in Human Cancers” 被 BIB 录用!
-
2025/1/23,团队(DMIR实验室)的2篇论文被 ICLR 2025 录用!
-
2025/1/20,团队(DMIR实验室)的2篇论文被 WWW 2025 录用!
-
2024/12/16,团队(DMIR实验室)的2篇论文被 Neural Networks 录用!
-
2024/12/10,团队(DMIR实验室)的2篇论文被 AAAI 2025 录用!
-
2024/12/3, 新获批NSFC-区域创新发展联合基金(广东)项目1项!
-
2024/9/26, 团队(DMIR实验室)的2篇论文被 NeurIPS 2024 录用!
-
2024/5/16, 1篇文章“S2GSL: Incorporating Segment to Syntactic Enhanced Graph Structure Learning for Aspect-based Sentiment Analysis”被 ACL 2024 录用!
-
2024/5/4, 1篇文章"A survey on causal reinforcement learning"被 TNNLS 录用!
-
2024/5/2, 团队(DMIR实验室)的4篇论文被 ICML 2024 录用!
-
2024/4/23,1篇文章"Long-term Causal Effects Estimation via Latent Surrogates Representation Learning"被 Neural Networks 录用!
-
2024/4/20, 应邀担任 Fundamental Research 杂志的青年编委!
-
2024/4/17, 团队(DMIR实验室)的2篇文章被 IJCAI 2024 录用!
-
2023/12/10, 团队(DMIR实验室)的8篇论文被AAAI 2024录用!
-
2023/10/19, 1篇文章"On the role of entropy-based loss for learning causal structures with continuous optimization"被 TNNLS 录用!
-
2023/10/11, 应邀担任《计算机工程》青年编委!
-
2023/10/03, 应邀担任 Neural Networks 杂志的执行编辑(Action Editor)!
-
2023/09/10, 1篇文章"REST: Debiased Social Recommendation via Reconstructing Exposure Strategies"被TKDD录用!
-
2023/08/06, 1篇文章"Transferable time-series forecasting under causal conditional shift"被TPAMI录用!
科研项目
-
NSFC-Regional Innovation and Development Joint Fund (Guangdong), Causal Discovery and Game Decision Theory and Methodology for Optimization in Complex Manufacturing Processes, U24A20233, January 2025-December 2028
-
National Key R&D Program of China, Research on Causal Inference and Decision Theories, 2021ZD0111500, January 2022-December 2025
-
National Science Fund for Excellent Young Scholars, Causal Inference Theory and Methods for High-Dimensional Heterogeneous Data, 62122022, January 2022-December 2024
-
National Natural Science Foundation of China, Research on Causal Mechanism and Methods of Nonstationary Social Network User Behaviors, 61876043, January 2019-December 2022
-
National Natural Science Foundation of China, Research on Causal Mechanism and Methods of Nonstationary Social Network User Behaviors, 61876043
-
Causal Discovery on Spatial-Temporal Data with Latent Confounders (October 2021-October 2022), supported by Huawei
-
Causal Discovery on High Dimensional Alarm Data and Applications (September 2019- July 2021), supported by Huawei
-
Long-term Causal-effect Analysis based on Short-term Surrogates (January 2022-December 2022), supported by Didi Chuxing
主要论文
因果关系发现
-
Zijian Li, Yifan Shen, Kaitao Zheng, Ruichu Cai*, Xiangchen Song, Mingming Gong, Guangyi Chen, Kun Zhang. On the Identification of Temporal Causal Representation with Instantaneous Dependence. ICLR 2025
-
Yuan Fang, Xiaofeng Feng, Geping Yang, Ruichu Cai, Yiyang Yang*, Zhiguo Gong*, Zhifeng Hao. EVA-MVC: Equitable View-weight Allocation for Generic Multi-View Clustering. WWW 2025
-
Yu Xiang, Jie Qiao, Zhefeng Liang, Zihuai Zeng, Ruichu Cai*, Zhifeng Hao. On the Identifiability of Poisson Branching Structural Causal Model Using Probability. NeurIPS 2024
-
Zhengming Chen, Ruichu Cai*, Feng Xie, Jie Qiao,Anpeng Wu, Zijian Li, Zhifeng Hao, Kun Zhang* Learning Discrete Latent Variable Structures with Tensor Rank Conditions. NeurIPS 2024
-
Wei Chen, Xiaokai Huang, Zijian Li, Ruichu Cai*, Zhiyi Huang, Zhifeng Hao. Individual Causal Structure Learning from Population Data. IJCAI 2024
-
Wei Chen, Zhiyi Huang, Ruichu Cai*, Zhifeng Hao, Kun Zhang. Identification of Causal Structure with Latent Variables based on Higher Order Cumulants. AAAI 2024
-
Yuequn Liu, Ruichu Cai*, Wei Chen, Jie Qiao, Yuguang Yan, Zijian Li, Keli Zhang, Zhifeng Hao. TNPAR: Topological Neural Poisson Auto-Regressive Model for Learning Granger Causal Structure from Event Sequences. AAAI 2024
-
Jie Qiao, Zhengming Chen, Jianhua Yu, Ruichu Cai*, Zhifeng Hao. Identification of Causal Structure in the Presence of Missing Data with Additive Noise Model. AAAI 2024
-
Jie Qiao, Yu Xiang, Zhengming Chen, Ruichu Cai*, Zhifeng Hao. Causal Discovery from Poisson Branching Structural Causal Model Using High-Order Cumulant with Path Analysis. AAAI 2024
-
Weilin Chen, Jie Qiao, Ruichu Cai*, Zhifeng Hao. On the role of entropy-based loss for learning causal structures with continuous optimization. TNNLS 2023
-
Ruichu Cai, Zhiyi Huang, Wei Chen, Zhifeng Hao, Kun Zhang. Causal Discovery with Latent Confounders Based on Higher-Order Cumulants. ICML 2023
-
Jie Qiao, Ruichu Cai*, Kun Zhang, Zhenjie Zhang, Zhifeng Hao. Causal Discovery with Confounding Cascade Nonlinear Additive Noise Models. ACM Transactions on Intelligent Systems and Technology (TIST), 2021: 12(6): 1-28
-
Wei Chen, Ruichu Cai*, Kun Zhang, Zhifeng Hao. Causal Discovery in Linear Non-Gaussian Acyclic Model with Multiple Latent Confounders. IEEE Transactions on Neural Networks and Learning Systems, 2021
-
Feng Xie*, Ruichu Cai*, Biwei Huang, Clark Glymour, Zhifeng Hao, Kun Zhang*. Generalized Independent Noise Condition for Estimating Linear Non-Gaussian Latent Variable Graphs. NeurIPS 2020
-
Feng Xie, Ruichu Cai*, Yan Zeng, Jiantao Gao, Zhifeng Hao. An Efficient Entropy-Based Causal Discovery Method for Linear Structural Equation Models with IID Noise Variables. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(5): 1667 - 1680
-
Ruichu Cai, Jincheng Ye, Jie Qiao, Huiyuan Fu, Zhifeng Hao. FOM: Fourth-Order Moment based Causal Direction Identification on the Heteroscedastic Data. Neural Networks, 2020, 124:193-201
-
Ruichu Cai, Feng Xie, Clark Glymour, Zhifeng Hao, Kun Zhang. Triad Constraints for Learning Causal Structure of Latent Variables. NeurIPS 2019
-
Ruichu Cai, Jie Qiao, Kun Zhang, Zhenjie Zhang, Zhifeng Hao. Causal Discovery with Cascade Nonlinear Additive Noise Model. IJCAI 2019
-
Ruichu Cai, Zhenjie Zhang, Zhifeng Hao, Marianne Winslett. Sophisticated Merging over Random Partitions: A Scalable and Robust Causal Discovery Approach. IEEE Transactions on Neural Networks and Learning Systems, 2018:29(8) : 3623 - 3635
-
Ruichu Cai, Jie Qiao, Zhenjie Zhang , et al. SELF: Structural Equational Likelihood Framework for Causal Discovery. AAAI 2018
-
Ruichu Cai, Jie Qiao, Kun Zhang, Zhenjie Zhang, Zhifeng Hao. Causal Inference from Discrete Data using Hidden Compact Representation. NeurIPS 2018
-
Ruichu Cai, Zhenjie Zhang, Zhifeng Hao. SADA: A General Framework to Support Robust Causation Discovery. ICML 2013
-
Jie Qiao, Ruichu Cai, Siyu Wu, Yu Xiang, Kun Zhang, Zhifeng Hao. Structural Hawkes Processes for Learning Causal Structure from Discrete-Time Event. IJCAI 2023
-
Ruichu Cai, Siyu Wu, Jie Qiao, Zhifeng Hao, Keli Zhang, Xi Zhang. THPs: Topological Hawkes Processes for Learning Causal Structure on Event Sequences. IEEE Transactions on Neural Networks and Learning Systems. 2022, 35(1):479 - 493
-
Ruichu Cai, Zhenjie Zhang, Zhifeng Hao, Marianne Winslett. Understanding Social Causalities Behind Human Action Sequences. IEEE Transactions on Neural Networks and Learning Systems. 2017, 28(8):1801-1813
因果性学习
-
Ruichu Cai, Zhifan Jiang, Kaitao Zheng, Zijian Li*, Weilin Chen, Xuexin Chen, Yifan Shen, Guangyi Chen, Zhifeng Hao, Kun Zhang. Learning Disentangled Representation for Multi-Modal Time-Series Sensing Signals. WWW 2025
-
Zijian Li, Shunxing Fan, Yujia Zheng, Ignavier Ng, Shaoan Xie, Guangyi Chen, Xinshuai Dong, Ruichu Cai, Kun Zhang. Synergy Between Sufficient Changes and Sparse Mixing Procedure for Disentangled Representation Learning. ICLR 2025
-
Xuexin Chen, Ruichu Cai*, Kaitao Zheng, Zhifan Jiang, Zhengting Huang, Zhifeng Hao, Zijian Li. Unifying invariant and variant features for graph out-of-distribution via probability of necessity and sufficiency. Neural Networks 2025
-
Ruichu Cai, Haiqin Huang, Zhifan Jiang, Changze Zhou, Yuequn Liu, Yuming Liu, Zhifeng Hao, Zijian Li. Disentangling Long-Short Term State Under Unknown Interventions for Online Time Series Forecasting. AAAI 2025
-
Yan Zeng, Ruichu Cai, Fuchun Sun, Libo Huang, Zhifeng Hao. A survey on causal reinforcement learning. TNNLS 2024
-
Xuexin Chen, Ruichu Cai*, Zhengting Huang, Yuxuan Zhu, Julien Horwood, Zhifeng Hao, Zijian Li, Jose Miguel Hernandez-Lobato. Feature Attribution with Necessity and Sufficiency via Dual-stage Perturbation Test for Causal Explanation.ICML 2023
-
Ruichu Cai, Yuxuan Zhu, Jie Qiao, Zefeng Liang, Furui Liu, Zhifeng Hao. Where and How to Attack? A Causality-Inspired Recipe for Generating Counterfactual Adversarial Examples. AAAI 2024
-
Ruichu Cai*, Fengzhu Wu, Zijian Li, Jie Qiao, Wei Chen, Yuexing Hao, Hao Gu. REST: Debiased Social Recommendation via Reconstructing Exposure Strategies. TKDD 2023
-
Zijian Li, Ruichu Cai*, Tom Fu, Zhifeng Hao, Kun Zhang. Transferable time-series forecasting under causal conditional shift. TPAMI 2023
-
Ruichu Cai, Jiawei Chen, Zijian Li, Wen Chen, Keli Zhang, Junjian Ye, Zhuozhang Li, Xiaoyan Yang, Zhenjie Zhang. Time Series Domain Adaptation via Sparse Associative Structure Alignment. AAAI 2021
-
Ruichu Cai, Jiahao Li, Zhenjie Zhang, Xiaoyan Yang, Zhifeng Hao. DACH: Domain Adaptation without Domain Information. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(12):5055-5067
-
Ruichu Cai, Zijian Li, Pengfei Wei, Jie Qiao, Kun Zhang, Zhifeng Hao. Learning Disentangled Semantic Representation for Domain Adaptation. IJCAI 2019
深度学习
-
Xuexin Chen, Ruichu Cai*, Zhengting Huang, Zijian Li, Jie Zheng, Min Wu*. Interpretable High-order Knowledge Graph Neural Network for Predicting Synthetic Lethality in Human Cancers. Briefings in Bioinformatics
-
Boyan Xu, Yuyuan Cai, Shaobin Shi, Zhifeng Hao, Ruichu Cai*. Chat2DB: Chatting to the Database with Interactive Agent Assisted Language Models. ICDE 2025
-
Ruichu Cai, Junhao Lu, Zhongjie Chen, Boyan Xu*, Zhifeng Hao. Handling Missing Entities in Zero-Shot Named Entity Recognition: Integrated Recall and Retrieval Augmentation. NAACL 2025
-
Bingfeng chen, Shaobin Shi, yongqi luo, Boyan Xu*, Ruichu Cai, Zhifeng Hao. Track-SQL: Enhancing Generative Language Models with Dual-Extractive Modules for Schema and Context Tracking in Multi-turn Text-to-SQL. NAACL 2025
-
Bingfeng chen, Chenjie Qiu, Yifeng Xie, Boyan Xu*, Ruichu Cai, Zhifeng Hao. $S^2$IT: Stepwise Syntax Integration Tuning for Large Language Models in Aspect Sentiment Quad Prediction. NAACL 2025
-
Ruichu Cai , Shengyin Yu , Jiahao Zhang , Wei Chen , Boyan Xu, Keli Zhang. Dr.ECI: Infusing Large Language Models with Causal Knowledge for Decomposed Reasoning in Event Causality Identification. Coling 2025
-
Bingfeng Chen, Haoran Xu, Yongqi Luo, Boyan Xu, Ruichu Cai, Zhifeng Hao. CACA: Context-Aware Cross-Attention Network for Extractive Aspect Sentiment Quad Prediction. Coling 2025
-
Yuguang Yan, Canlin Yang, Yuanlin Chen, Ruichu Cai*, Michael Ng. Hypergraph Learning for Unsupervised Graph Alignment via Optimal Transport. AAAI 2025
-
Jian Zhu,Shuliu Wu,Yutang Xiao*, Boyu Wang,Ruichu Cai. Dual-contrastive Multi-view Graph Attention Network for Industrial Fault Diagnosis under Domain and Label Shift. IEEE Transactions on Instrumentation & Measurement
-
Bingfeng Chen, Qihan Ouyang, Yongqi Luo, Boyan Xu*, Ruichu Cai, Zhifeng Hao. S2GSL: Incorporating Segment to Syntactic Enhanced Graph Structure Learning for Aspect-based Sentiment Analysis. ACL 2024
-
Jiahao Li, Ruichu Cai*, Yuguang Yan. Combinatorial Routing for Neural Trees. IJCAI 2024
-
Yuguang Yan, Zhihao Xu, Canlin Yang, Jie Zhang, Ruichu Cai*, Michael Kwok-Po Ng. An Optimal Transport View for Subspace Clustering and Spectral Clustering. AAAI 2024
-
Yuguang Yan, Yuanlin Chen, Shibo Wang, Hanrui Wu, Ruichu Cai*. Hypergraph Joint Representation Learning for Hypervertices and Hyperedges via Cross Expansion. AAAI 2024
-
Xuexin Chen, Ruichu Cai*, Yuan Fang, Min Wu, Zijian Li, Zhifeng Hao. Motif Graph Neural Network. IEEE Transactions on Neural Networks and Learning Systems. 2023, Early Access
-
Zhifeng Hao, Junbin Chen, Wen Wen, Biao Wu, Ruichu Cai. A selection-pattern-aware recommendation model with colored-motif attention network. Neurocomputing, 2023: 538: 126-178
-
Ruichu Cai, Jinjie Yuan, Boyan Xu, Zhifeng Hao. SADGA: Structure-Aware Dual Graph Aggregation Network for Text-to-SQL. NeurIPS 2021
-
Ruichu Cai, Hao Zhang, Wen Liu, Shenghua Gao, Zhifeng Hao. Appearance-Motion Memory Consistency Network for Video Anomaly Detection. AAAI 2021
-
Ruichu Cai, Zhihao Liang, Boyan Xu, zijian li, Yao Chen and Yuexing Hao. TAG: Type Auxiliary Guiding for Code Comment Generation. ACL 2020
-
Ruichu Cai, Xuexin Chen, Yuan Fang, Min Wu, Yuexing Hao. Dual-Dropout Graph Convolutional Network for Predicting Synthetic Lethality in Human Cancers. Bioinformatics, 2020, 36(16):4458-4465
-
Ruichu Cai, Boyan Xu, Xiaoyan Yang, Zhengjie Zhang, Zijian Li, Zhihao Liang. An Encoder-Decoder Framework Translating Natural Language to Database Queries. IJCAI 2018
因果效应
-
Yuguang Yan, Hao Zhou, Zeqin Yang, Weilin Chen, Ruichu Cai*, Zhifeng Hao. Reducing Balancing Error for Causal Inference via Optimal Transport. ICML 2024
-
Feng Xie, Zhengming Chen, Shanshan Luo, Wang Miao, Ruichu Cai, Zhi Geng. Automating the Selection of Proxy Variables of Unmeasured Confounders. ICML 2024
-
Weilin Chen, Ruichu Cai*, Zeqin Yang, Jie Qiao, Yuguang Yan, Zijian Li, Zhifeng Hao. Doubly Robust Causal Effect Estimation under Networked Interference via Targeted Learning. ICML 2024
-
Ruichu Cai*, Weilin Chen, Zeqin Yang, Shu Wan, Chen Zheng, Xiaoqing Yang, Jiecheng Guo. Long-term Causal Effects Estimation via Latent Surrogates Representation Learning. Neural Networks, 2024.
-
Yuguang Yan, Zeqin Yang, Weilin Chen, Ruichu Cai*, Zhifeng Hao, Michael Kwok-Po Ng. Exploiting Geometry for Treatment Effect Estimation via Optimal Transport. AAAI 2024.
-
Ruichu Cai, Zeqin Yang, Weilin Chen, Yuguang Yan, Zhifeng Hao. Generalization Bound for Estimating Causal Effects from Observational Network Data. CIKM 2023
2019年及之前
-
Ruichu Cai, Zijie Lu, Li Wang, Zhenjie Zhang. DITIR: Distributed Index for High Throughput Trajectory Insertion and Real-time Temporal Range Query. PVLDB 2017
-
Ruichu Cai, Mei Liu, Yong Hu , Brittany L. Melton, Michael E. Matheny,Hua Xu, Lian Duan, Lemuel R. Waitman. Identification of adverse drug-drug interactions through causal association rule discovery from spontaneous adverse event reports. Artificial Intelligence in Medicine 76 (2017) 7-15
-
Ruichu Cai, Zhenjie Zhang, Srinivasan Parthasarathy, Anthony K. H. Tung, Zhifeng Hao, Wen Zhang. Multi-Domain Manifold Learning for Drug-Target Interaction Prediction. SDM 2016
-
Ruichu Cai, Zhifeng Hao, Marianne Winslett, Xiaokui Xiao, Yang Yin, Zhenjie Zhang, Shuigeng Zhou. Deterministic Identification of Specific Individuals from GWAS Results[J]. Bioinformatics, 2015, 31(11): 1701-1707
-
Yong Hu, Xiangzhou Zhang, EWT Ngai, Ruichu Cai, Mei Liu. Software project risk analysis using Bayesian networks with causality constraints. Decision Support Systems, 2013, 56: 439-449
-
Ruichu Cai, Zhenjie Zhang, Zhifeng Hao. Causal Gene Identification Using Combinatorial V-Structure Search, Neural Networks. 2013;43:63-71
-
Mei Liu, Ruichu Cai (Co-First Author), Yong Hu, ME Matheny, Jianchuan Sun, Jun Hu. Determining molecular predictors of adverse drug reactions with causality analysis based on structure learning[J]. JAMIA, 2013, 21(2):245-51
-
Ruichu Cai, Tung K.H. Anthony, Zhifeng Hao, Zhenjie Zhang. What is Unequal among the Equals? Ranking Equivalent Rules from Gene Expression Data. IEEE Transactions on Knowledge and Data Engineering, 2011;23(11):1735-1747
主要荣誉
-
国家自然科学基金优秀青年科学基金获得者 - 2022 年 1 月
-
中国专利优秀奖 - 2019 年 10 月
-
广东省自然科学一等奖 - 2016 年 4 月
-
广东省自然科学基金优秀青年科学基金获得者 - 2014 年 5 月
-
广东省自然科学二等奖 - 2014 年 4 月
学术兼职
-
Action Editor: Neural Networks
-
The Youth Editor: Fundamental Research
-
Area Chair: ICML2022, ICML2023, ICML2024, NeurIPS2022, NeurIPS2023, NeurIPS2024, ICLR2024, UAI2021, UAI2022, UAI2023
-
Senior PC: AAAI 2019-2022, IJCAI 2019-2021
-
PC: AAAI 2015-2019, IJCAI 2018-2019, NIPS 2016-2018, ICML 2015-2018, AISTATS 2016-2019, ICLR 2018-2019
-
Associate Editor: Frontiers in Bioinformatics
-
Reviewer: TNNLS, TPAMI, TKDE, TIST, Neural Network, Pattern Recognition, Bioinformatics, Neurocomputing, Information Sciences, National Science Review, Science China-Information Sciences and so on.
实用链接
Portfolio:
https://sites.google.com/site/cairuichu
我的团队 (拼音首字母排序):
陈薇 ,
乔杰, 温雯,
许柏炎 , 闫玉光 ...
Github:
https://github.com/DMIRLAB-Group
Causal Learn:
causal-learn: Causal Discovery in Python